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A simple novel constitutive equation for concrete 

C. L. D. HUANG 
Department of Mechanical Engineering, Durland, Kansas State University, 
Manhattan, KS 66506, USA 

A simple novel constitutive equation, three parameter strength criterion for concrete is 
proposed to represent the composite nature and complex failure mechanism of material of 
concrete. In this paper, the study is to demonstrate the use of scalar valued function, 
invariant theory, as applied to concrete failure prediction. Without the loss of accuracy of 
prediction, a three parameter strength criterion is developed. 

1. Introduction 
The characteristic properties of concrete have been 
shown to be those of a complex, multiphase material 
which is best studied as a composite. The physical 
properties in the final state (hydrated state) depend on 
the original mixed proportions and the environmental 
conditions during cure. Real concrete is, in general, 
non-homogeneous, anisotropic and non-continuous, 
as it is composed of groups of elements formed into 
a large number of discrete particles. However, there is 
a dimensional level of aggregation (the phenom- 
enological or engineering level) at which the concept 
of the structural element can be replaced by a homo- 
geneous, isotropic, continuous medium composed of 
structural elements of identical properties. The 
mechanical characteristics of concrete are best 
idealized at the macroscopic level for engineering 
design applications. The assumption of homogeneity 
can be justified only on a statistical basis after 
consideration of the average properties of the elements 
in the body. 

The failure for concrete has been shown to be 
initiated by numerous microscopic flaws or cracks 
inherent within the concrete matrix. The average in- 
fluence of these microscopic flaws, as viewed from 
macroscopic theory, reveal distinct levels of change in 
the mechanical behaviour of concrete. As the stress 
level increases, the mechanical behaviour changes 
from quasi-elastic to plastic, with two distinct points 
of departure. The initial discontinuity begins at the 
onset of stable fracture propagation, while the ulti- 
mate strength is reached at the onset of unstable 
fracture propagation. The hydrostatic (spherical) and 
deviatoric components of the localized stress have 
been shown to delay and propagate the internal crack 
growth, respectively. 

The development of a strength criterion for a 
material depends on its stress state at or during 
failure conditions, eitlaer it is brittle or ductile. 
Consideration of mechanical response and failure 
mode shows that concrete is best classified as a brittle 
material for normal hydrostatic pressure. The 
strength characterization of most brittle materials 

0022-2461 �9 1996 Chapman & Hall 

depends on the hydrostatic as well as the deviatoric 
component of stress, while the characterization of the 
ductile material is independent of the hydrostatic 
component. 

Most strength criteria presented in previous 
papers follow functional forms, which are functions of 
stress tensors. The strength criteria presented in these 
papers show poor agreement with experimental 
results. The theories presented often depend on the 
material co-ordinate systems, and are not invariant, 
and so require complex methodologies for 
characterization of material parameters. These criteria 
have, for the most part, been formulated within the 
framework of classical theories of plasticity, which are 
subject to a number of strong constraints. These 
approaches lack generality and agreement with 
physical laws. 

In recent years, as complex, anisotropic, fibre 
reinforced composites have been manufactured and 
used as structural elements, more appropriate 
methods for the characteristics of materials have 
been sought. In the field of non-linear continuum 
mechanics there have been continuous develop- 
ments following more powerful approaches to these 
problems. In reviewing the recently proposed 
general strength criteria, the continuum mechanics 
approach has been most prominent. The application 
of general and explicit tensor based scalar-valued 
or tensor-valued functions has proven to be useful 
for developing strength criteria and constitutive 
equations. Many investigations have shown the 
value of using tensor function theory in these 
applications. 

The composite nature and complex failure mecha- 
nism of concrete dictate a need for a more rational 
approach to strength criterion development. Use of 
the invariant strength function theory, a six parameter 
constitutive equation for concrete have been obtained 
by the author. For the purpose of simplicity in this 
paper, a simple novel constitutive equation, three 
parameter, is proposed without loss of significant 
engineering accuracy. Although the six parameter 
constitutive equation yields the highest accuracy, 
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the simple three parameter constitutive equation 
also can predict accurately the strength of con- 
crete. 

2. Experimental procedure 
2.1. Development of the simple novel 

strength criterion 
The development of a strength criterion for the pre- 
diction of the ultimate strength of concrete under 
multiaxial loadings should be formulated from the 
systematic theories of modern continuum mechanics. 
The criterion should be validated by accurate experi- 
mental data for the determination of the failure sur- 
face for concrete. A strength criterion to predict the 
failure of concrete is by necessity governed by the 
failure mechanisms. These failure mechanisms must be 
related mathematically, and yield a failure surface in 
a stress space. 

The tensor functional technique of non-linear con- 
tinuum mechanics is the most logically applicable 
to the formulation of the strength criterion. Such 
functionals satisfy the requirement of invariance for 
a group of orthogonal transformations specific to 
the material symmetry. In addition, tensor function 
theory allows inclusion of any number of stress inter- 
action terms, which gives the theory a broad applica- 
bility to the characterization of anisotropic material. 
The tensor functional technique for the development 
of a strength criterion is a new approach which p r o -  
duces a rational criterion. 

A strength function has been shown to be express- 
ible as 

f(0"o) = 1 i , j = 1 , 2 , 3  (1) 

determined the second-, fourth- and sixth-order of 
invariant quantities in the three-dimensional case for 
each of the crystal classes from consideration of in- 
variant transformations of the strength function. The 
invariant quantities for the isotropic material sym- 
metry case are as follows 

II  = 0"1 + 0"2 + 0"3 

12  - ( o l o ' 2  "q- 0"20"3 -}- 0"30"1) 

13 = (3"1(3"20" 3 (4)  

where I} is the j th invariant quantities of ith degree. 
The strength function for an isotropic material in 

the form of Equation 1 can be rewritten as 

f ( I1 ,  12, 13) = 1 (5) 

Also, Equation 5 can be expressed in terms of the 
deviatoric and spherical invariant quantities, where 

J 2  = 1/6[(0.1 - 0.2) 2 -~- (0"2 - -  0.3) 2 -~- ((5"3 - 0"1) 2 ]  

J3 = (0.1 -- 0.)(0.2 - o)(o3 - 0.) 

1 1 
0. = ~(0.1 + 0.z + 0.3) = ~11 (6) 

Therefore, a strength function is also expressible as 
a function 

f(I1, J2, J 3 )  = t (7)  

The proposed strength function by Chen and Chen 
[7] followed the invariant of a tensor function of a 
second degree. A two equation strength criterion, 
using the invariant quantities of Equation 7, is given as 

where 0.;j is a stress tensor referred to an arbitrary 
co-ordinate system. The form of the failure function in 
Equation 1 has been followed by past investigators. In 
general, the strength criteria presented were functions 
of the applied stress which were non-invariant, i.e. 
[1-4]  etc. 

A strength function for a given material symmetry 
(isotropic for concrete) must be invariant under a 
complete point group of transformations of co-ordina- 
tes, {tq}, which associate with the group of material 
symmetry. This insures that the strength criterion is 
a scalar (invariant under the appropriate group of 
co-ordinate transformation), and is a single-valued 
function, as indicated by Equation 1. It is known that 
failure is a physical phenomenon which is totally inde- 
pendent of co-ordinates. Thus the requirement of in- 
variance states 

f (e i j )  = f(0.q) i, j = 1, 2, 3 (2) 

where (~ij) represents the transformed stress compo- 
nents 

(Yij = ti~tjs0.rs i, j, r, s = 1, 2, 3 (3) 

Invariant quantities for each class of  anisotropic 
materials have been obtained [5, 6]. Huang [6] 

f ( I1 ,  J2) = J2 + @ 1 1  = t 2 (8a) 

for the compression-compression region, and for all 
other regions, (compression-tension, tension-tension 
and tension-compression) as 

1 @ : (8b) f ( I 1 , J 2 )  = J2 - ~ I f  + I1  = tu 

where Au and t 2 are material parameters. 
The strength functions of Equation 8 are a special 

form of linear combination of invariants. The func- 
tions are of quadratic form. The quadratic form has 
been addressed and shown to be inadequate in its 
definition of the failure envelope for the biaxial 
principal stress plane. The cubical forms of the 
polynomial based on tensor function theory have been 
discussed [6, 8-10]. They suggested that the third 
degree terms are necessary to be included and to 
explain the additional stress interaction relations. The 
quadratic form at best can describe a conic curve 
which may not yield accurate correlations with 
experimental data for concrete in all four quadrants of 
the biaxial plane. 

In order to formulate a cubic strength function, the 
invariant quantities of 13 must be included. Thus the 
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invariant quantities of each degree for an isotropic 
material are 

11, first degree: I1 

12, second degree: I 2, J2 

13, third degree: 13, I1J2, J3, I2(j2) 1/2 (9) 

The system of quantities, Equation 9, represents terms 
which are required to form a cubic strength function 
for isotropic materials. 

A strength function, which is a combination of the 
invariant quantities, Equation 9, has been proposed 
for concrete by Huang [-11], as follows 

Al l t  -t- At l I  2 + A22J2 -1- A111I~ + A12211J2 

A112I~(J2) 1/2 = 1 ( 1 0 )  

where all As are material parameters of the strength 
tensor. 

The six independent material parameters (A1, A11, 
A l l l ,  A 2 2  , A 1 2 2 ,  Al12) are determined from 
experimental strength data for concrete, and thus 
characterize the strength quality of concrete. 
However, at least six independent engineering tests are 
required for the determination of Equation 10. For 
engineering purposes, a novel strength criterion 
should be established by using the least number of 
engineering tests which is enough to produce 
a criterion of acceptable accuracy. Therefore, this 
study has sought to simplify the proposed Equation 
10 through the elimination of terms with slight 
influence on the material strength. From comparison 
of the strength criteria, a simple, three parameter 
strength function is judiciously proposed. This 
proposed function is similar to that of Chen and Chen 
[7], but it includes an additional term of higher order 
(cubic tensor) invariant. The material parameters 
At, All , A22 and Al l l  can be expressed in terms of 
three new material constants at,  A and B 2. The pro- 
posed strength function for concrete subjected to bi- 
axial states of stresses is given as follows 

aa a3 B2 f(I~) = ~- I1  + a I  2 + ~ 1 3  + J2 = (11) 

where al ,  a3 and B 2 are material parameters which are 
determined through simple engineering material tests, 
and A is a constant value. Equation 11 represents a 
simple strength function which satisfies the invariant 
requirement of isotropic material symmetry. This 
form is analytically simpler and more physically 
vigorous than previously proposed criteria which 
were based on classical plasticity approaches to 
fracture definition. In addition, the proposed criterion 
represents a novel, complete and unified function 
capable of accurately describing the biaxial failure 
envelope. 

3. Discussion 
3.1. Characterization coefficients of the 

novel strength criterion 
The proposed strength function presented in Equa- 
tion 11 is characterized to a given strength quality of 
concrete by the three material parameters, al ,  a2 and 
B 2. The three parameters are determined from simple 
engineering material tests. The engineering material 
tests required are: uniaxial compressive strength (fc), 
uniaxial tensile strength (ft), and the biaxial spherical 
compressive strength (fbo). 

To determine the three material parametersl the 
proposed strength function, Equation 11, is rewritten 
in terms of the stress states within the test specimen 
during the tests. By solving the following three simul- 
taneous independent equations, the parameters are 
determined. 

1. Uniaxial compression 

O'1 = - f c ;  0"2 = 0"3 = 0 

I1 = 0"1 + 0"2 + 0"3 = - f c  

1 _-- -  
J2 = ~ [-(0"1 - 0"2) 2 + (0"2 - 0"3) 2 + (0"3 - 0"1) 2] f2  

3 

substituting I1 and J2 into Equation 11 yields 

- a327 J~'3 f2_3 = B z (12) 3 al f~ + a f  2 - + 

2. Uniaxial tension 

0"1 = i t ;  0"2 = 0"3 = 0 

I1 = i t  

it 
J2 = 

substituting 11 and J2 into Equation 11 yields 

2 

+ aftZ + 27 j t  + ~- 
it a3r f t  = B 2 (13) 

3. Biaxial spherical compression 

0"1 : 0-2 : --fbc; 0-3 : 0 

11 = -- 2fb~ 

J2 =fb~ 
3 

substituting 11 and J2 into Equation 11 yields 

- 2 a l  8 a 3 3  . f ~ = B  2 (14) 3 fbo + 4A/2~ - ~ - f b ~  + -~- 

Equations 12, 13 and 14 yield three equations with 
three unknown material parameters. The three simul- 
taneous linear equations are solved and the three 
parameters are given in terms of the simple material 
strengths as 

Jr- 3 [-(3A + 1)(ft 2 2 3 3 _ _ --f~)(8fb~--f~)  3A(f  2 4f2)(f tz  + f 3 ) _ ( f 2 _ f 2 ) ( f 2  f~)]  

a, = (2fbr _fr  t + fr _ (it +fr  --f~) 
(15) 
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- al(ft +f~) - 3(A + 1/3)(f 2 _ f 2 )  
a3 = (ft3 +f~)  (16) 

B2 = a f  2 a3f~ +f2 alf~ (17) 
27 3 3 

where fc, ft and fbo are absolute material property 
values. Therefore by measuring or estimating the three 
material strengths, f~, f and fb~, the strength of con- 
crete is completely characterized. 

The value of the constant A in Equation 11 is a 
constant and independent of property of materials, 
but does have an important influence upon the shape 
of the failure envelope�9 Determination of the value 
A has been accomplished by comparison of the failure 
envelope generated from Equation 11 to the failure 
envelope implied through experimental data. The re- 
gions of stress state influenced to the greatest extent by 
the value have been found to be the tension-tension 
(T-T) and tension-compression (C-T) quadrants of 
the principal stress plane. The value of the constant 
A which yields the highest accuracy within these re- 
gions has been determined to be 

A = + 0.2 in compression-compression region 

and 

A = - 0.34 in tension-tension and 

tension-compression regions (18) 

The increasing accuracy of the strength criterion, by 
the change of the value of constant A in the C - C  
region from - 0 . 3 4  to + 0.2, is demonstrated by 
comparison with experimental data. The accuracy of 
the strength function to conform with the failure en- 
velopes is shown very well as in the following Figs 1, 
2 and 3. The advantage of the proposed strength 
criterion for concrete is mathematically simple and 
physically sound. It proves to be more accurate than 
the other criteria, with exception to the complete cubic 
strength function, Equation 10. 

The experimental failure data for concrete of vari- 
ous strengths of Kupfer et  al. [13] are used for evalu- 
ation of the strength envelopes of Equations 10 and 11 
on the concrete. The investigators [13] tested three 
different compressive strengths of concrete, 1.8 x 10 6, 
3.1x 10 6 and 5.8 X 10 6 kgm -2. The material 
parameters for the proposed simple novel strength 
criterion (three parameter Equation 13 are given in 
Table I, and the results for the cubic strength criterion 
[11] (six parameter Equation 10), are also given in 
Table II. 

For comparison, the results yield by the complete 
cubic strength function, Equation 10, the criterion 
proposed by Chen and Chen [7], and the proposed 
simplified three parameter strength criterion, Equa- 
tion 11, are plotted in Figs 1, 2 and 3 for various 
strengths of concrete. The complete cubic function 
given in [-11] proves to be of higher accuracy than 
others. The biaxial failure envelope generated by the 
complete cubic function complies with the experi- 
mentally determined envelope exceptionally well In 
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Figure 1 Strength surface for (a) cyo = 1.8 x 10 6 kgm -2, (b) C-T 
region, and (c) T-T region: ( ) modified cubic function, (- ) 
cubic function, (--. ) after [7]. 
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Figure 2 Strength surface for (a) cr~ = 3.1 x I06 kgm -z, (b) C T 
region, and (c) T T region: ( ) modified cubic function, ( - - - )  
cubic function, ( - ) after [7]. 

(c) o-1 

Figure 3 Strength surface for (a) (yo = 5.8x 106kgm -2, (b) C T 
region, and (c) T T region: ( ) modified cubic function, ( - - - )  
cubic function, ( - - . - - )  after [7]. 
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T A B LE I Three parameter criterion coefficients 

Concrete 
strength 
(kg m -  2) 

A1 ~ A l l  b A22 ~ AHI a 

For T - T  and T - C  (A = - 0.34) 
1.8 x 106 11.274 - 33.028 97.142 - 12.922 
3.1 x 106 11.274 - 33.028 97.142 - 12.922 
5.8 xl06 11.272 - 31.735 93.338 - 12.894 

For C - C  (A = 0.2) 
1.8 x 106 10.043 4.425 22.123 0.756 
3.1 x 106 10.043 4.425 22.123 0.756 
5.8 x 106 10.047 4.409 22.045 0.710 

"Aa = a l / 3 B  2. 
b A11 = A / B 2 .  

e A22 = a3/27B 2. 
dAlt  1 = 1/B 2. 

TAB LE I I Six parameter criterion coefficients 

Concrete A 1 
strength 
(kg m- 2) 

A~I A22 A~H At22 Al12 

1.8 x 106 - 8.762 - 33.923 89.000 - 6.165 - 110.481 98.745 
3.1x 106 - 8.729 - 39.995 138.408 - 17.500 - 250.285 181.025 
5.8x 106 - 8.351 -43.690 164.366 - 22.948 - 328.088 226.142 

order to demonstrate its capabilities, the regions of 
tension-tension and compression-tension are also en- 
larged in the figures. The function fit to the test data 
points is the most superior. However, the proposed 
three parameter function of this study given in Equa- 
tion 11 proves also very accurate. It shows to be only 
slightly less accurate than the complete six parameter 

function. Indeed within the region of greatest interest, 
compression compression, the three parameter func- 
tion is accurate as equally as the complete cubic strength 
criterion. It is really simple, also it is physically and 
mathematically sound. Only the basic engineering ma- 
terial tests are required, such as uniaxial compressive 
strength, uniaxial tensile strength and the biaxial com- 
pressive strength. It is truly convenient for practical 
engineers to use. 
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